3.7.5 \(\int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx\) [605]

Optimal. Leaf size=241 \[ -\frac {(8 A-14 B+9 C) \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{8 \sqrt {a} d}+\frac {\sqrt {2} (A-B+C) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {(8 A-2 B+7 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{8 d \sqrt {a+a \sec (c+d x)}}+\frac {(6 B-C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {C \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}} \]

[Out]

-1/8*(8*A-14*B+9*C)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d/a^(1/2)+(A-B+C)*arctanh(1/2*sin(d*x+c
)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)+1/8*(8*A-2*B+7*C)*sec(d*x+c)^(3/2
)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/12*(6*B-C)*sec(d*x+c)^(5/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/3*C*
sec(d*x+c)^(7/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.54, antiderivative size = 241, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.156, Rules used = {4173, 4106, 4108, 3893, 212, 3886, 221} \begin {gather*} \frac {(8 A-2 B+7 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{8 d \sqrt {a \sec (c+d x)+a}}+\frac {\sqrt {2} (A-B+C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {(8 A-14 B+9 C) \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{8 \sqrt {a} d}+\frac {(6 B-C) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{12 d \sqrt {a \sec (c+d x)+a}}+\frac {C \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^(5/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

-1/8*((8*A - 14*B + 9*C)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(Sqrt[a]*d) + (Sqrt[2]*(A -
 B + C)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d) + (
(8*A - 2*B + 7*C)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(8*d*Sqrt[a + a*Sec[c + d*x]]) + ((6*B - C)*Sec[c + d*x]^(5
/2)*Sin[c + d*x])/(12*d*Sqrt[a + a*Sec[c + d*x]]) + (C*Sec[c + d*x]^(7/2)*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c
+ d*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 3893

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*b*(d/
(a*f)), Subst[Int[1/(2*b - d*x^2), x], x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 4106

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-B)*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(f*(m +
n))), x] + Dist[d/(b*(m + n)), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1)*Simp[b*B*(n - 1) + (A*b*(m
+ n) + a*B*m)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 -
 b^2, 0] && GtQ[n, 1]

Rule 4108

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Dist[(A*b - a*B)/b, Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Dist[B
/b, Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A
*b - a*B, 0] && EqQ[a^2 - b^2, 0]

Rule 4173

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(
(d*Csc[e + f*x])^n/(f*(m + n + 1))), x] + Dist[1/(b*(m + n + 1)), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^
n*Simp[A*b*(m + n + 1) + b*C*n + (a*C*m + b*B*(m + n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A
, B, C, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] &&  !LtQ[n, -2^(-1)] && NeQ[m + n + 1, 0]

Rubi steps

\begin {align*} \int \frac {\sec ^{\frac {5}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx &=\frac {C \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {\int \frac {\sec ^{\frac {5}{2}}(c+d x) \left (\frac {1}{2} a (6 A+5 C)+\frac {1}{2} a (6 B-C) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{3 a}\\ &=\frac {(6 B-C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {C \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {\int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (\frac {3}{4} a^2 (6 B-C)+\frac {3}{4} a^2 (8 A-2 B+7 C) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{6 a^2}\\ &=\frac {(8 A-2 B+7 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{8 d \sqrt {a+a \sec (c+d x)}}+\frac {(6 B-C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {C \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {\int \frac {\sqrt {\sec (c+d x)} \left (\frac {3}{8} a^3 (8 A-2 B+7 C)-\frac {3}{8} a^3 (8 A-14 B+9 C) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{6 a^3}\\ &=\frac {(8 A-2 B+7 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{8 d \sqrt {a+a \sec (c+d x)}}+\frac {(6 B-C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {C \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+(A-B+C) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx-\frac {(8 A-14 B+9 C) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx}{16 a}\\ &=\frac {(8 A-2 B+7 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{8 d \sqrt {a+a \sec (c+d x)}}+\frac {(6 B-C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {C \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}-\frac {(2 (A-B+C)) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {(8 A-14 B+9 C) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{8 a d}\\ &=-\frac {(8 A-14 B+9 C) \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{8 \sqrt {a} d}+\frac {\sqrt {2} (A-B+C) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {(8 A-2 B+7 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{8 d \sqrt {a+a \sec (c+d x)}}+\frac {(6 B-C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {C \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.53, size = 198, normalized size = 0.82 \begin {gather*} \frac {\cos \left (\frac {1}{2} (c+d x)\right ) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (48 (A-B+C) \tanh ^{-1}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right )-3 \sqrt {2} (8 A-14 B+9 C) \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 \sec (c+d x) \left (3 (8 A-2 B+7 C)+2 (6 B-C) \sec (c+d x)+8 C \sec ^2(c+d x)\right ) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{12 d (A+2 C+2 B \cos (c+d x)+A \cos (2 (c+d x))) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a (1+\sec (c+d x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]^(5/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(Cos[(c + d*x)/2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*(48*(A - B + C)*ArcTanh[Sin[(c + d*x)/2]] - 3*Sqrt[2
]*(8*A - 14*B + 9*C)*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]] + 2*Sec[c + d*x]*(3*(8*A - 2*B + 7*C) + 2*(6*B - C)*Sec
[c + d*x] + 8*C*Sec[c + d*x]^2)*Sin[(c + d*x)/2]))/(12*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*(c + d*x)])*Sec
[c + d*x]^(3/2)*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(639\) vs. \(2(204)=408\).
time = 0.21, size = 640, normalized size = 2.66

method result size
default \(\frac {\left (-1+\cos \left (d x +c \right )\right ) \left (24 A \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right )+24 A \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (-1-\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right )-42 B \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right )-42 B \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (-1-\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right )+27 C \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right )+27 C \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (-1-\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right )-96 A \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \left (\cos ^{3}\left (d x +c \right )\right )-48 A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right )+96 B \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \left (\cos ^{3}\left (d x +c \right )\right )+12 B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right )-96 C \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \left (\cos ^{3}\left (d x +c \right )\right )-42 C \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right )-24 B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )+4 C \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )-16 C \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (\frac {1}{\cos \left (d x +c \right )}\right )^{\frac {5}{2}}}{48 d \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )^{2} a}\) \(640\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/48/d*(-1+cos(d*x+c))*(24*A*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)+sin(d*x+c))*2^(1/2))*2^(1/2)*c
os(d*x+c)^3+24*A*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(-1-cos(d*x+c)+sin(d*x+c))*2^(1/2))*2^(1/2)*cos(d*x+c)^3
-42*B*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)+sin(d*x+c))*2^(1/2))*2^(1/2)*cos(d*x+c)^3-42*B*arctan
(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(-1-cos(d*x+c)+sin(d*x+c))*2^(1/2))*2^(1/2)*cos(d*x+c)^3+27*C*arctan(1/4*(-2/(1
+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)+sin(d*x+c))*2^(1/2))*2^(1/2)*cos(d*x+c)^3+27*C*arctan(1/4*(-2/(1+cos(d*x+c))
)^(1/2)*(-1-cos(d*x+c)+sin(d*x+c))*2^(1/2))*2^(1/2)*cos(d*x+c)^3-96*A*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c))
)^(1/2))*cos(d*x+c)^3-48*A*(-2/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*cos(d*x+c)^2+96*B*arctan(1/2*sin(d*x+c)*(-2/(1
+cos(d*x+c)))^(1/2))*cos(d*x+c)^3+12*B*(-2/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*cos(d*x+c)^2-96*C*arctan(1/2*sin(d
*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*cos(d*x+c)^3-42*C*(-2/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*cos(d*x+c)^2-24*B*(-2/
(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*cos(d*x+c)+4*C*(-2/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*cos(d*x+c)-16*C*(-2/(1+co
s(d*x+c)))^(1/2)*sin(d*x+c))*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(1/cos(d*x+c))^(5/2)/(-2/(1+cos(d*x+c)))^(1/2
)/sin(d*x+c)^2/a

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 5206 vs. \(2 (204) = 408\).
time = 0.92, size = 5206, normalized size = 21.60 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-1/96*(24*(4*sqrt(2)*cos(3/2*arctan2(sin(d*x + c), cos(d*x + c)))*sin(2*d*x + 2*c) - 4*sqrt(2)*cos(1/2*arctan2
(sin(d*x + c), cos(d*x + c)))*sin(2*d*x + 2*c) + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c)
 + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2
+ 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c
))) + 2) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x +
c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x +
c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + (cos(2*d*x + 2*c)^2 + sin(2
*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arcta
n2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2
*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1
)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*
sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))
+ 2) - 2*(sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(
cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*ar
ctan2(sin(d*x + c), cos(d*x + c))) + 1) + 2*(sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 2*sqrt(
2)*cos(2*d*x + 2*c) + sqrt(2))*log(cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + sin(1/2*arctan2(sin(d*x +
c), cos(d*x + c)))^2 - 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 1) - 4*(sqrt(2)*cos(2*d*x + 2*c) + sqr
t(2))*sin(3/2*arctan2(sin(d*x + c), cos(d*x + c))) + 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(1/2*arctan2(si
n(d*x + c), cos(d*x + c))))*A/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*sqrt(a)) - 6
*(4*(sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(7/2*arctan2(sin(d*x + c), cos(d*x + c))) - 20*
(sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(5/2*arctan2(sin(d*x + c), cos(d*x + c))) + 20*(sqr
t(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(3/2*arctan2(sin(d*x + c), cos(d*x + c))) - 4*(sqrt(2)*
sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 7*(2*(2*cos(2*d*
x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x
+ 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), c
os(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), c
os(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - 7*(2*(2*cos(2*d*x + 2*c) + 1)*co
s(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x
 + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2
+ 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) -
2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + 7*(2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) +
 cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(
2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arct
an2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/
2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - 7*(2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c
)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 +
 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c)
, cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*
x + c), cos(d*x + c))) + 2) - 8*(sqrt(2)*cos(4*d*x + 4*c)^2 + 4*sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(4*d*x
 + 4*c)^2 + 4*sqrt(2)*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sqrt(2)*sin(2*d*x + 2*c)^2 + 2*(2*sqrt(2)*cos(2*d*
x + 2*c) + sqrt(2))*cos(4*d*x + 4*c) + 4*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(cos(1/2*arctan2(sin(d*x + c),
 cos(d*x + c)))^2 + sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x +
 c))) + 1) + 8*(sqrt(2)*cos(4*d*x + 4*c)^2 + 4*sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(4*d*x + 4*c)^2 + 4*sqr
t(2)*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sqrt(2)*sin(2*d*x + 2*c)^2 + 2*(2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2
))*cos(4*d*x + 4*c) + 4*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2
 + sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))...

________________________________________________________________________________________

Fricas [A]
time = 5.16, size = 689, normalized size = 2.86 \begin {gather*} \left [\frac {3 \, {\left ({\left (8 \, A - 14 \, B + 9 \, C\right )} \cos \left (d x + c\right )^{3} + {\left (8 \, A - 14 \, B + 9 \, C\right )} \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} + \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {48 \, \sqrt {2} {\left ({\left (A - B + C\right )} a \cos \left (d x + c\right )^{3} + {\left (A - B + C\right )} a \cos \left (d x + c\right )^{2}\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} - \frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}} + \frac {4 \, {\left (3 \, {\left (8 \, A - 2 \, B + 7 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (6 \, B - C\right )} \cos \left (d x + c\right ) + 8 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{96 \, {\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2}\right )}}, -\frac {48 \, \sqrt {2} {\left ({\left (A - B + C\right )} a \cos \left (d x + c\right )^{3} + {\left (A - B + C\right )} a \cos \left (d x + c\right )^{2}\right )} \sqrt {-\frac {1}{a}} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \sqrt {\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right ) + 3 \, {\left ({\left (8 \, A - 14 \, B + 9 \, C\right )} \cos \left (d x + c\right )^{3} + {\left (8 \, A - 14 \, B + 9 \, C\right )} \cos \left (d x + c\right )^{2}\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right ) - \frac {2 \, {\left (3 \, {\left (8 \, A - 2 \, B + 7 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (6 \, B - C\right )} \cos \left (d x + c\right ) + 8 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{48 \, {\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/96*(3*((8*A - 14*B + 9*C)*cos(d*x + c)^3 + (8*A - 14*B + 9*C)*cos(d*x + c)^2)*sqrt(a)*log((a*cos(d*x + c)^3
 - 7*a*cos(d*x + c)^2 + 4*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*si
n(d*x + c)/sqrt(cos(d*x + c)) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 48*sqrt(2)*((A - B + C)*a*cos(d*x +
c)^3 + (A - B + C)*a*cos(d*x + c)^2)*log(-(cos(d*x + c)^2 - 2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*
sqrt(cos(d*x + c))*sin(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))/sqrt(a) +
 4*(3*(8*A - 2*B + 7*C)*cos(d*x + c)^2 + 2*(6*B - C)*cos(d*x + c) + 8*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c
))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c)^3 + a*d*cos(d*x + c)^2), -1/48*(48*sqrt(2)*((A - B + C)*
a*cos(d*x + c)^3 + (A - B + C)*a*cos(d*x + c)^2)*sqrt(-1/a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x +
 c))*sqrt(-1/a)*sqrt(cos(d*x + c))/sin(d*x + c)) + 3*((8*A - 14*B + 9*C)*cos(d*x + c)^3 + (8*A - 14*B + 9*C)*c
os(d*x + c)^2)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x +
 c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)) - 2*(3*(8*A - 2*B + 7*C)*cos(d*x + c)^2 + 2*(6*B - C)*cos(d*x +
 c) + 8*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c)^3 + a*d*
cos(d*x + c)^2)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sec(d*x + c)^(5/2)/sqrt(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1/cos(c + d*x))^(5/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(1/2),x)

[Out]

int(((1/cos(c + d*x))^(5/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________